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SUMMARY

There are some approaches for all-hexahedral mesh quality improvement by means of node-movement
while preserving the connectivity. Among these methods, the most easily implemented and well known
one is the Laplacian smoothing method; however, for this method mesh quality improvement is not
guaranteed in all cases, and this approach might cause inverted elements especially in concave regions.
In this work, a method for the improvement of hexahedral mesh shape-quality without causing inverted
elements is proposed; which is based on optimization of an objective function calculated by means of the
individual qualities of hexahedral elements in the mesh. The shape-quality for each hexahedral element
is defined via the condition number of the relevant element. The numerical optimization scheme is the
particle swarm optimization method, which originated from observations related to the social behaviors of
bird, insect, or fish colonies. The purpose of this paper is to discuss the applicability of this approach to
mesh smoothing. Some examples are given in order to demonstrate the applicability. Copyright q 2008
John Wiley & Sons, Ltd.
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1. INTRODUCTION

In recent years, several algorithms have been developed for all- or dominant-hexahedral mesh
generation [1–5]. For these algorithms, high quality of the resultant mesh is not always guaranteed;
and skewed and/or inverted elements are likely. On the other hand, mesh quality is known to be
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critical for the accuracy in finite element method (FEM) solutions. Hence, mesh quality improve-
ment can be crucial in practice. Quality improvement methods can be classified as node movement
(including smoothing and optimization), node swapping, insertion, and topological cleanup [6].

Smoothing can be defined as repositioning of the nodes in a mesh without changing the connec-
tivity. There exist multiple ways of smoothing: Laplacian smoothing and its variations [7, 8],
optimization-based smoothing [9–12], physics-based smoothing [13, 14], and hybridization of
different techniques. The optimization-based unstructured mesh smoothing methods are preferred
over the Laplacian methods, since they do not create inverted elements. On the other hand, gener-
ally they are computationally more expensive. Sometimes, combining these methods may result
in efficient and fast quality improvement tools [6].

Much research has been conducted, and many papers have been published in the field of
unstructured mesh smoothing and optimization [7, 9–12]. Among these papers, to the authors’
knowledge, [15–20] are examples which dealt with unstructured hexahedral mesh smoothing. The
method described in [15] is based on maximizing a variant of the scaled-Jacobian metric. This
approach does not guarantee that the improved mesh will consist only of untangled elements;
however the method in [16] achieves this goal. The aim of this paper is to propose another method,
which is as successful as [16].

2. HEXAHEDRAL ELEMENT QUALITY METRIC

Invertibility, size, and shape are the three important factors of the element quality:

• If an element has positive local volume (everywhere in the element, not just at the eight
corners), then it is considered to be invertible.

• For a mesh without any inverted elements, element size becomes the factor under consideration.
An element must be small enough to have small discretization errors, and on the other hand,
it should be sufficiently large such that available computer resources (CPU time, memory)
are efficiently used.

• The last metric is element shape, which is a function of element aspect ratios and skew [21].
Skew gives information about the angles within an element regardless of the aspect ratio.
Accuracy decreases if an element contains very large and small angles (i.e. close to 0 or
180◦). In [16], Knupp showed that the shape can be expressed as a function of the condition
number, which can be improved by means of:

(i) aspect ratio improvement, and/or
(ii) element skew reduction.

Definitions about element quality are directly taken from [16]. For clarification, these definitions
are repeated in this section. The eight nodes of a hexahedral element (k=0,1, . . . ,7) can be
numbered such that the nodes 0, 1, 2, 3 are at the bottom, and the nodes 4, 5, 6, 7 are at the top
surface; this numbering scheme and the node coordinates of hexahedral element transformed to
the ���-space are listed in Table I.

Let x be the position vector of one of the eight nodes; and x1,x2, and x3 be the coordinates of
the three neighbor nodes. Their order for proper orientation is again listed in Table I. Three edge
vectors e1=x1−x,e2=x2−x,e3=x3−x and the matrix A can be formed from the three column
vectors, A=[e1|e2|e3]. This means that if the vector x is (x, y, z); and for i=1,2,3 if the vectors
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Table I. Nodal ordering for a hexahedral element.

k (�,�,�) x1 x2 x3

0 (0,0,0) 1 3 4
1 (1,0,0) 2 0 5
2 (1,1,0) 3 1 6
3 (0,1,0) 0 2 7
4 (0,0,1) 7 5 0
5 (1,0,1) 4 6 1
6 (1,1,1) 5 7 2
7 (0,1,1) 6 4 3

xi are (xi , yi , zi ), then A can be written as follows:

A=
⎡
⎢⎣
x1−x x2−x x3−x

y1− y y2− y y3− y

z1−z z2−z z3−z

⎤
⎥⎦ (1)

For each node of the hexahedron, eight such matrices, Ak can be constructed. It is assumed
that the element is untangled; namely det(Ak)�0 for all k. If there is a tangled element inside the
mesh, then prior to the optimization it should be untangled. For this purpose, the method described
in [22], or the one described in [23] (if applied to 3D) can be used.

Knupp also has defined weight matrices Wk in order to specify the ideal element shape in [21].
By means of Ak and Wk , the matrices Tk =AkW

−1
k are formed and used in order to represent

the shape metrics. The shape metric is defined as follows: the matrices Tk resemble an orthogonal
matrix if the objective function gets optimized. In case that the element becomes an ideal element
(most probably with a different orientation), Tk becomes orthogonal, and eventually Ak =TkWk .
For hexahedra, the ideal shape is a cube; and the weight matrix is the identity matrix.

Let the condition number be �(T)=|T||T−1|, where the matrix norm is the Frobenius norm.
f =8/

∑
k(�(Tk)/3)2 is an algebraic shape metric for hexahedral elements. The proof is given in

[16]. With this definition, f is a non-simplicial algebraic shape metric since it has the following
properties:

• the domain of f is the set of matrices Tk =AkW
−1
k , k=0,1, . . . ,K −1, with det(Tk)�0;

• f is size invariant;
• f is orientation invariant;
• For all Tk,0� f ({Tk})�1;
• f ({Tk})=1 if and only if Tk is a scalar multiple of an orthogonal matrix for all k;
• f ({Tk})=0 if and only if det(Tk)=0 for some k; i.e. the three edges having a common node

are coplanar;
• It should be noted that for tangled elements, shape is not defined.

(The notation f ({Tk}) stands for f being a function of all Tk matrices.)
It is obvious that other functions satisfying the definition of a shape metric can also be defined

and used in order to define an objective function for element quality improvement.
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3. THE OBJECTIVE FUNCTION

Based on the shape quality metric mentioned in the previous section, an objective function is
described in this section. Again, the definition is reused from [16]. The objective function considers
the shape quality of all elements in a hexahedral mesh. Let Tn,k be the matrix corresponding to
the kth node of the nth hexahedral element �n . We can define

fn = f (�n)= 1

1/8
∑

k(�(Tn,k)/3)2
(2)

as the quality metric of the nth hexahedral element in the mesh (where n=1, . . . ,N ).
For the definition of the objective function, it is better to work with 1/ fn instead of fn because

it provides a greater numerical range and a steeper gradient; as well as a metric creating a barrier.
The objective function is the sum over all elements (�n’s) inside the hexahedral mesh (�)

F= 1

N

∑
n

(1/ fn)−1= 1

8N

∑
n

∑
k

(�(Tn,k)/3)
2−1 (3)

This is nothing but the sum of the squares of the element condition numbers. The objective
function is scaled so that the minimum value of F is 0.

4. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) method is an effective optimization algorithm, which has
been applied successfully to some difficult multidimensional continuous/discontinuous problems
in various fields so far [24]. Moreover, this technique has been shown to be outperforming other
optimization methods such as genetic algorithms (GAs) [25–30].

PSO, which has been developed in 1995 by Kennedy and Eberhart [31], can be described
through its leading example: Assume that there is a swarm of bees whose main aim is to find the
location with the highest density of flowers in a field without any a priori knowledge; starting at
random locations with random velocities. Each bee can remember its previsited successful locations
(cognitive behavior), and also it can feel the best locations found by the swarm (social behavior).
When a bee finds a better place than previously found places, then it would have tendency to go
to this new location in addition to the best location found by the swarm. Eventually, the whole
swarm would be attracted towards that location.

Each member of the swarm is referred to as a particle; which corresponds to a solution candidate.
All the particles accelerate toward the best personal and best overall location; meanwhile they
continuously check the value of their current locations.

Each member of the swarm remembers the best location of own discovery. This location is
called the personal best or pbest. On the other hand, each member feels the best location discovered
by the swarm. This is called the global best or gbest of the swarm.

The necessary steps for the PSO algorithm are as follows: After the definition of the
fitness/objective function; and the definition of the solution space; the particles (i.e. locations and
velocities) in the swarm are initialized. Then the particles are moved inside the solution space.
For each particle, the fitness is evaluated at the relevant particle’s location. If this value is greater
than the value calculated at pbest of the relevant particle, or the global gbest of the swarm, then
these values are updated.
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Figure 1. Pictorial description of PSO in 2D.

The velocity manipulation is the main key to convergence in PSO. Locations of pbest and gbest
are major factors for the new velocity value of a particle during this step. A particle gets accelerated
in the directions of pbest and gbest as follows:

vn =w ·vn+c1 ·u1 ·(pbest,n−xn)+c2 ·u2 ·(gbest,n−xn) (4)

where xn is the particle’s coordinate in the nth dimension and vn is the velocity of the particle in
the nth dimension. This operation is performed at each dimension in an N -dimensional problem.
A pictorial description in two-dimensions can be seen in Figure 1. It can clearly be seen in this
equation that the new velocity is the summation of the current velocity scaled by w and increased
in the direction of gbest and pbest for that dimension.

c1 and c2 are scaling factors representing the attraction powers of pbest and gbest. c1 is a factor
showing the memory/history influence on a particle’s movement (i.e. a metric of cognitivity), and
c2 is a factor showing the swarm’s influence on a particle’s movement (i.e. a metric of sociality).
Increasing c1 increases a particle’s tendency to its own pbest; whereas increasing c2 increases a
particle’s tendency to the assumed global maximum.

u1 and u2 are random numbers between 0.0 and 1.0 obeying uniform distribution. In most PSO
implementations, two independent random numbers are used in order to control the attraction
powers of gbest and pbest. The main reason for this is to add a flavor of unpredictability to the
behavior of the swarm. w is known as the inertial weight, and this number (chosen to be between
0.0 and 1.0) determines how much the particle remains along its original direction regardless of
the gbest and pbest attraction. This is a factor adding diversity, and setting up a balance between
exploration and exploitation. Detailed discussions about the ideal choices of c1, c2 and w can be
found in [32].

After the velocity has been calculated, the movement of the particle is straightforward. The
velocity is applied during a given time-step, which is usually chosen to be unity; and the new
coordinate is calculated at each dimension as follows:

xn = xn+�t.vn (5)
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Figure 2. Boundary condition/wall concept in PSO: (a) absorbing walls; (b) reflecting
walls; and (c) invisible walls.

After these operations are completed for all particles in the swarm, the whole movement and
fitness evaluation process is repeated. Hence, the particles are moved for discrete time intervals as
if their snapshots are taken at the end of each time-interval. This is carried on until the termination
criterion (criteria) is (are) met. There might be several termination criteria, such as maximum
iteration number, achievement of target fitness, saturation in improvement of gbest, etc.

In most applications, it is usually desired to put constraints on the search domain. Due to the
movements of the particles, there is always a possibility that particles fall outside the solution space
during the iterations. In order to prevent/avoid this problem, three different boundary conditions
can be imposed [32] as seen in Figure 2:

(1) If a particle exceeds the boundary of the solution space at one dimension, the velocity in
that dimension is set to zero; and the relevant particle is implicitly pulled back toward
the allowed solution space. This case can be considered as an absorbing boundary
condition.

(2) If a particle exceeds the boundary of the solution space at one dimension, the velocity is
reversed in that dimension; and hence the particle is directly reflected back; which can be
considered as a reflecting boundary condition.

(3) Without any constraints, the particles are moved to everywhere; but for a, particle falling
outside, fitness is not evaluated; which is interpreted as an invisible boundary condition.

5. ADAPTATION OF PSO AND DERIVATIVES TO MESH SMOOTHING

Adaptation of PSO to the mesh smoothing will fall into the optimization-based smoothing cate-
gory. Certainly, optimization-based smoothing methods are computationally expensive compared
to methods like Laplacian methods; on the other hand, for assured success they do not have any
restrictions (such as the convexity of the region to be smoothed) like Laplacian methods. The main
motivations for the usage of PSO in this work can be summarized as follows:

• First of all, PSO is a young but promising, flexible, easy-to-implement global optimization
algorithm which is suitable for multidimensional continuous optimization problems by its
definition. Due to these facts, it is appropriate for the mesh smoothing problems.

• The method is open to modifications, variations, and hybridizations for performance improve-
ment purposes.
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• Unlike some other optimization algorithms, it does not require any a priori information about
the gradient of the objective function. Evaluation of the objective function at a given point is
sufficient for the implementation.

• So far, it has been demonstrated that PSO outperforms (in terms of accuracy, convergence
speed, CPU and memory requirements) most of the nature-inspired optimization algorithms
[25–30].

• By its well-known rapid convergence feature, it can provide quick results from highly distorted
mesh. Moreover, unlike most mesh smoothing techniques, it provides global optimization
rather than yielding local extrema; which are highly probable to be encountered in the mesh
smoothing problems.

• Since it is a population-based search method, PSO provides not only the best solution, but
also a large set of good solutions. There might be some applications for mesh smoothing,
where one would like to get advantage of this property. For example, with a set of different
meshes for the same geometry, it might be possible to investigate the effect of mesh shape
(especially some particular details of the mesh) on the solution accuracy.

• The composite nature of PSO makes it especially conducive to implementation on parallel
processors.

For the adaptation of PSO (and its derivatives such as NPSO [33]) to mesh smoothing problems,
in the most general case it should be noted that the objective function F is a function of n variables,
where n is the total number of node coordinates to be adjusted for mesh quality improvement. More
specifically, if the nodes to be adjusted in the problem are P1, P2, . . . , Pk where Pi =(xi , yi , zi );
then the objective function F will be a function of n=3k variables, and it can be written as
F(x1, y1, z1, x2, y2, z2, . . . , xk, yk, zk).
Considering that the number of nodes in a mesh is usually very large, at first glance it can be

said that the problem will yield a function F with a large number of variables. The following
paragraphs give an idea about how large the dimension or the degree of freedom (DOF) is.

The mesh seen in Figure 3 has a total of (N+1)(L+1)(M+1) nodes assuming that all elements
are of first order. During the smoothing of this mesh; if all nodes are allowed to move, then the
DOF of this problem will be:

DOFmax=3(N+1)(L+1)(M+1) (6)

The value in (6) represents the worst case; and hence it is called as DOFmax. Obviously by
allowing all the nodes to move, the shape of the volume of interest will most probably change
after mesh smoothing. However in most cases, the shape of the volume of interest is preserved,
which means:

• The corner nodes are fixed,
• The surface nodes are allowed only to move along the surface, and
• The edge nodes are allowed only to move along the edges.

With such restrictions, it can be shown that the DOF might reduce down to

DOFnom=3(N−1)(L−1)(M−1)+4M(L−1)+4L(N−1)+4N (M−1) (7)

The proof is straightforward depending on the brute force count of the nodes. This value
represents the typical case, and it is a nominal value; hence it is called as DOFnom. This means
that DOFmax is only a theoretical upper bound, which is not encountered in practice.
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Figure 3. (a) 3D isometric view of the computational domain consisting of NLM hexahedral elements and
(b) 3D isometric view of only one layer.

Another extreme case is to preserve the surface mesh completely. In such a case, the DOF
reduces to

DOFmin=3(N−1)(L−1)(M−1) (8)

In summary, DOFmin is a lower bound, whereas DOFmax is an upper bound; and DOFnom is a
typical value for the smoothing of such volume of interest.

It is sure that high DOF will increase the computation efforts during the mesh smoothing. The
following paragraphs discuss some techniques in order to reduce the DOF, and to have a more
efficient PSO solution:

1. Domain decomposition (The divide and conquer method): During the improvement of the
mesh quality, there might be opportunities to decompose the main domain into r independent
subdomains. Via this manipulation, instead of trying to solve a PSO problem with n-DOF, one
can try to solve r independent problems with ni -DOF where �ni =n. Certainly, it should be noted
that with such an approach, the optimization will not be global (i.e. the smoothed mesh will be
sub-optimal).

Assume that the volume of interest (i.e. the problem domain) is divided into subdomains. For
mesh continuity, two adjacent subdomains (say V1 and V2) should have the same surface mesh at
their shared surface (S12). Assume that the mesh of V1 is smoothed initially; and assume that the
surface mesh at S12 is preserved during the smoothing of V2. This means that in such a case, the
expected degree-of-freedom (say DOFexp) for the smoothing operation of V2 mesh will be even
lower than DOFnom. Moreover, if a volume is surrounded by other volumes in all directions; and
if all of its surface meshes have already been smoothed, then DOFexp will be reduced down to
DOFmin. Consequently, for a non-isolated volume (i.e. surrounded by other volumes) the following
can be said about DOFexp:

DOFmin�DOFexp�DOFnom (9)
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Table II. Performance measures for PSO-mesh smoothing of various domains.

PC-1 PC-2

Maximum Total Elapsed Total Elapsed
Number of degree of elapsed time per elapsed time per

N L M elements freedom time (s) element (s) time (s) element (s)

2 2 2 8 81 0.06 0.00750 0.048 0.00600
3 3 3 27 192 0.09 0.00333 0.065 0.00241
4 4 4 64 375 0.17 0.00266 0.113 0.00177
5 5 5 125 648 0.27 0.00216 0.193 0.00154
6 6 6 216 1029 0.461 0.00213 0.321 0.00149
7 7 7 343 1536 0.711 0.00207 0.513 0.00150
8 8 8 512 2187 1.122 0.00219 0.786 0.00154
9 9 9 729 3000 1.753 0.00240 1.268 0.00174
10 10 10 1000 3993 2.644 0.00264 2.022 0.00202
11 11 11 1331 5184 3.925 0.00295 3.146 0.00236
12 12 12 1728 6591 5.888 0.00341 4.414 0.00255
13 13 13 2197 8232 8.472 0.00386 5.838 0.00266
14 14 14 2744 10125 12.067 0.00440 8.015 0.00292
15 15 15 3375 12288 16.424 0.00487 10.997 0.00326
16 16 16 4096 14739 22.342 0.00545 14.894 0.00364
17 17 17 4913 17496 29.923 0.00609 20.274 0.00413

Number of Particles=20.
Number of Iterations=50.
PC1: Intel Pentium M 1.4GHz 512MB RAM Laptop.
PC2: Intel Pentium 4 3.4GHz 100GB RAM Desktop.

The optimum computation size (in terms of number of elements) is tried to be investigated by
means of a simple analysis. A PSO setup with 20-particle population and 50 iterations is executed.
The DOF is chosen to be worst case; i.e. all nodes are allowed to be floating, which yields DOFmax.
Table II shows the elapsed time (both total and per element) during the PSO-smoothing for meshes
with for various N , L , and M values. All preprocessing (memory allocations, PSO population
setup, etc.) and postprocessing (memory deallocations, result displays, etc.) operations are included
in the total elapsed time.

The performance measurement is performed by means of PSO mesh generation script executed
at Matlab 6.5 on two separate PCs, where:

• PC1 is a laptop Windows PC with Intel Pentium M 1.4GHz CPU and 512MB RAM.
• PC2 is a desktop Windows PC with Intel Pentium 4 3.4GHz CPU and 1GB RAM.

Investigation of Table II yields the following observations:

• The elapsed time per element is minimum (about 0.00150 s on PC-2) for 6×6×6 or 7×7×7-
element-sized domains.

• For domains smaller than 6×6×6, the overhead for the problem setup (operations like swarm
generation, and updates) seem to be dominant in terms of CPU time. Hence, due to such
overheads, elapsed time per element is high for small domains.

• For domains larger than 7×7×7, PSO-related operations seem to be dominant. As the
allocated memory and the particle sizes increase, the updates and objective function evaluations
take longer times.
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By using the results of this analysis, the following divide-and-conquer strategy can be proposed:

• For the most efficient PSO mesh smoothing, a mesh can be considered as a collection of
7×7×7-element (or comparable sized) subdomains.

• Mesh smoothing can be performed at each subdomain one by one.

By using the divide-and-conquer strategy, a mesh of 100 000 elements is smoothed by PSO (with
50 iterations, 20 particles) about 84 s on PC-2 by using 7×7×7-element subdomains. During this
experiment;

• The shape of the main domain is preserved; i.e. the nodes along the outer surfaces are allowed
to be moving along the surfaces. There is no other specific restriction.

• For the interior subdomains, eventual DOF reduction is performed by getting use of the shared
surface mesh, if the relevant adjacent subdomain is already smoothed. For such subdomains,
the DOF is DOFexp, where its lower and upper bounds are given in Equation (9).

It should be noted that the manipulation of the interior subdomains is the main weakness of this
approach. Holding the surface mesh for a subdomain yields a sub-optimal solution. In addition,
changing the order of the subdomains yields a differently smoothed mesh.

The optimality of 7×7×7-element subdomain size can be observed in the same problem
numerically. By using the same setup described above, the solution of the same problem takes
123 s on PC-2 if 10×10×10-element subdomains are used.

Such a strategy will dramatically reduce the complexity and the computation time. Certainly,
the number of iterations necessary for convergence highly depends on the DOF. Moreover, the
population size should be increased for high DOF problems. Nevertheless, the results of this
analysis give an idea of optimum subdomain size (which is 7×7×7 or equivalent) for fixed
population size and fixed number of iterations.

Figure 4 shows the PSO-smoothed version (via divide-and-conquer method) of the mesh seen
in Figure 3.

Figure 4. (a) 3D isometric view of the PSO-smoothed version of the mesh in Figure 3 and
(b) 3D isometric view of only one layer.
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2. Fixing some nodes: Instead of trying to move all the nodes, some nodes (especially the ones
on the boundaries) might be considered to be fixed. As an example, if the i th and j th nodes are
defined to be fixed; then the function F(x1, y1, z1, . . . , xi , yi , zi , . . . , x j , y j , z j , . . . , xk, yk, zk) will
be simplified to F(x1, y1, z1, . . . , xk, yk, zk).

3. Imposing nodes dependencies: The movement of some nodes can be defined to be depen-
dent on each other. For example, if the movement of the i th node in x direction is set to
be dependent to the movement of the j th node in x direction; then the function F(x1, y1,
z1, . . . , xi , yi , zi , . . . , x j , y j , z j , . . . , xk, yk, zk) will be simplified to F(x1, y1, z1, . . . , xi , yi , zi , . . . ,
y j , z j , . . . , xk, yk, zk).
4. Setting rules to individual node movements: The movement of a node inside a mesh might

be defined to be in some specific direction; to yield a dependent movement in two direc-
tions. For example, the movement of a node might be defined to be in r direction of the
cylindrical coordinates where r =(x2+ y2)1/2. If the movement of the i th node is set to be
in r direction; then the function F(x1, y1, z1, . . . , xi , yi , zi , . . . , xk, yk, zk) will be simplified to
F(x1, y1, z1, . . . ,ri , zi , . . . , xk, yk, zk).
5. Reduction by means of symmetry: For symmetric problems, instead of trying to optimize the

whole mesh, only a subset can be optimized and the whole mesh can be reconstructed. For some
problems, this might cause the dimension of F to reduce to 1

8 or even 1
16 of the original; if a

solution in an octant or half octant is sufficient.
Certainly, manipulations as fixing some nodes, imposing some nodes to be dependent, setting

rules to individual node movement reduce the level of quality improvement. There is a trade-off
between the quality of the final mesh and the computation time. On the other hand, increasing
the DOF does not always guarantee better improvement. Moreover, manipulations as reduction
by means of symmetry might not be applicable in most of the problems in practice. Practically,
methods other than domain decomposition (divide-and-conquer) might not be applicable in most
cases.

The adaptation of PSO to mesh smoothing is slightly different than the normal PSO procedure.
Instead of initializing all the particles in n-dimensional space in a totally random manner, an
automatically generated mesh is used for this purpose. All particles are positionally initialized by
superimposing Gaussian noise (with zero mean and a user defined variance) to the automatically
generated mesh at each dimension. The initial velocities of the particles at each dimension are
generated as in the ordinary PSO. The �t value is chosen to be unity; and the initial random
velocities of the particles are assigned so that a node can move a distance of at most li along
one direction due to this velocity component at first iteration. Here, li is a user-defined parameter;
chosen to be comparable to average edge length along one direction.

Obviously, the choice of the step size (i.e. both �t and vn) in the optimization has great impact
on the convergence. So far, the effects of the step size and its selection/computation have not
been specifically investigated in the mesh smoothing problem. This is a potential subject of further
research.

The fitness evaluation throughout the algorithm is achieved by means of minimization of F in
Equation (3); i.e. the fitness of a mesh increases as F decreases. All pbest, gbest computations are
performed by using this definition.

With manipulations, initializations and definitions described above, it is possible to apply PSO
and its derivatives to the mesh smoothing problems.

For the simple examples in the present work, a population size of 15 is chosen (for most
applications it is shown that a population size of 10–20 is efficient); and the number of iterations
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is taken as 50. c1 and c2 are chosen to be 2.0 as usual, and w is chosen to be 1.0. Moreover, for
all nodes reflecting walls are defined.

As a practical application of above manipulations, two problems in engineering electromagnetics
are given as examples. As will be noticed, there are so numerous manipulations in the examples
that; one can think whether these reductions are worth to apply rather than solving the problem
with high DOF. Certainly, it is wiser to solve these problems directly rather than spending effort to
decrease the DOF; but the examples are just given to demonstrate the application of the suggested
reduction methods.

First, the circular microstrip patch antenna, which is a well-known structure both for scattering
or radiation problems in engineering electromagnetics, is considered. The mesh generated for this
problem should be conformal to the circular patch internally; and it should be conformal to the
rectangular prism substrate externally. An automatically generated all-hexahedra mesh for this
structure can be seen in Figure 5.

First, the problem domain can be reduced by means of symmetry; where the problem can be
solved in a quadrant. Then, domain decomposition can be performed by considering the sub-domain
inside the circular patch; and the sub-domain between the circular patch and the outer boundary
of the substrate separately. More dimension reduction can be achieved if further symmetry is
considered in each sub-domain. These manipulations are illustrated in Figure 6. Moreover in each
sub-domain, the nodes at the boundaries can be defined to be fixed; and the movements of some
nodes can be defined in specific directions only. These operations can be seen in Figure 7.

Another advantage of PSO, when applied to mesh smoothing problem, is the imposure of the
boundary conditions. The nodes can easily be classified as ‘on the boundary’, ‘adjacent to the
boundary’, ‘completely inside’ during the mesh generation process (at least, the mesh generation
algorithm developed for this work performs this operation). By using this information, the boundary

Figure 5. Automatically generated all-hexahedral mesh for circular microstrip patch antenna.
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Figure 6. Symmetry reduction and domain decomposition.

Figure 7. Fixing some nodes, setting rules to individual node movements,
and imposing node dependencies.

condition applied to each node can be decided automatically, rather than considering them one
by one.

For a moving node, a reflecting boundary condition (wall) can be applied so that the relevant
element is kept untangled (although the condition number metric used in this work already controls
untangling, this method can be used as a general mechanism for prevention of untangling in general).
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In order to keep the nodes inside a boundary (e.g. the boundary of the computational domain),
absorbing or invisible walls can be defined on the boundaries as well. For the circular microstrip
patch antenna problem, the reflecting walls defined for all floating nodes are illustrated in Figure 8.

The overall quality improvement in the circular microstrip patch antenna mesh improvement is
achieved by means of two separate PSO schemes; a 2-DOF scheme for Subvolume I (Figure 9), and
a 2-DOF scheme for Subvolume II (Figure 10). Finally, the whole procedure is summarized and
illustrated in Figure 11. In the figures, only the top views of the meshes are given for better
and simpler visualization rather than 3D views. It should not be misinterpreted as if the volume
mesh is reduced to surface mesh; and hexahedral elements are treated as quadrilateral elements.
Without losing generality, all operations (metric and objective function calculation, PSO setup)
are performed exactly as defined above.

Figure 8. Setting boundary conditions (reflecting walls) to floating nodes.

Figure 9. An example of PSO mesh smoothing (circular microstrip patch—outer subdomain; problem
dimension reduced to 2-DOF): (a) automatically generated mesh and (b) PSO smoothed mesh.
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Figure 10. An example of PSO mesh smoothing (circular microstrip patch—inner subdomain; problem
dimension reduced to 2-DOF): (a) automatically generated mesh and (b) PSO smoothed mesh.

Figure 11. Main steps followed in PSO mesh smoothing of circular microstrip patch (domain
decomposition, symmetry reduction, and reconstruction).

Another application considered in the present work is the scattering of a perfectly conducting
sphere with a radius of one wavelength (�), which is an engineering electromagnetics applica-
tion again. For this problem, it is certainly known that the total electric field inside the perfectly
conducting sphere is zero. Hence, there is no need to consider the sphere; and there is no need
to generate mesh for this volume. This means that the computational domain is a thick spherical
shell. For automatic all-hexahedral mesh generation, the computational domain shall be decom-
posed into three sub-domains; two top hats and the remaining surrounding region as seen in
Figure 12.
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Figure 12. Subdomains necessary for all-hexahedral meshing of a spherical shell.

Automatically generated mesh for the top hat is usually of poor quality; whose cross section
for a constant R surface can be seen in Figure 13. Again, by employing symmetry the dimension
of the objective function F can be reduced. Moreover, instead of trying to improve the whole top
hat mesh, only one layer can be improved and then whole top hat can be reconstructed.

The improvement in the top hat mesh can be seen in Figures 14 and 15 with different views. It
should be noted that this improvement is achieved by means of only a 3-DOF PSO scheme.

Since this problem is an open domain problem, in order to be able to apply the FEM, an artificial
absorber shall be defined for the simulation of extension to infinity and mesh truncation. Perfectly
matched layers (PMLs) defined by Berenger [34] is implemented in this work for this purpose by
means of the complex coordinate stretching [35]. Hence, the cross section of the mesh is classified
into regions as free space and PML as seen in Figure 16. The calculated electric field for the PML
region is physically meaningless, and hence ignored throughout the error norm analysis described
in the following paragraphs.

For this problem, the effect of the mesh quality on the Finite Element Solution accuracy is
investigated. First, the exact area of the surface ST of the top hat (as seen in Figure 17) has been
compared to the calculated areas of the automatically generated and PSO-smoothed meshes. In
other words, for G′(x, y, z)=G ′(x, y, z)aR where G ′(x, y, z)=1, the following surface integral is
computed.

Sexact=
∫ ∫

ST
G′(x, y, z) ·ds=

∫ ∫
ST

(aRG ′(x, y, z)) ·(aR ds)=
∫ ∫

ST
ds (10)

By using the isoparametric hexahedral elements (i.e. assuming that each hexahedral element
is transformed to a cube in ���-space extending from (−1,−1,−1) to (1,1,1); for any function
G ′(x, y, z), the surface integral on the surface of an element∫ ∫

Se
G ′(x, y, z)ds (11)
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Figure 13. Top hat mesh viewed and investigated in different levels of detail.

Figure 14. Arbitrary constant R surface extracted from the top hat mesh: (a) automatically
generated mesh (3D isometric view of a constant R surface) and (b) PSO smoothed mesh (3D

isometric view of a constant R surface.

in the xyz-space can be stated as

∫ 1

−1

∫ 1

−1
G(�,�,�)

∣∣∣∣�(x, y, z)

�(��)

∣∣∣∣ d�d�, � constant (12)
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Figure 15. One layer of mesh extracted from the top hat mesh: (a) automatically generated mesh (3D
isometric view of one layer) and (b) PSO smoothed mesh (3D isometric view of one layer).

Figure 16. Cross section of the mesh generated for the perfectly electric conductor sphere problem.

in the ���-space. In Equation (12),

∣∣∣∣�(x, y, z)

�(��)

∣∣∣∣=
[(

�x
��

�y
��

− �x
��

�y
��

)2

+
(

�z
��

�x
��

− �z
��

�x
��

)2

+
(

�y
��

�z
��

− �z
��

�y
��

)2
]1/2

(13)

Or, in other words,

ds=
∣∣∣∣�(x, y, z)

�(��)

∣∣∣∣ d�d� where � is constant (14)

Certainly, Scalculated can be stated as
∑

n

∫∫
Se
G ′(x, y, z)ds where the summation traces all

elements on the surface of the top hat. For the error in S, we define the following error norm:

err(S)= |Scalculated−Sexact|
Sexact

(15)
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Figure 17. Surface and volume definitions of the top hat.

Second, the exact volume of the top hat (VT as seen in Figure 17) has been compared to the
calculated volumes of the automatically generated and PSO-smoothed meshes. In other words, for
H ′(x, y, z)=1, the following volume integral is computed

Vexact=
∫ ∫ ∫

VT
H ′(x, y, z)dv=

∫ ∫ ∫
VT

dv (16)

By using the isoparametric hexahedral elements; for any function H ′(x, y, z), the volume integral
in an element ∫ ∫ ∫

Ve
H ′(x, y, z)dv (17)

in the xyz-space can be stated as

∫ 1

−1

∫ 1

−1

∫ 1

−1
H(�,�,�)det(J)d�d�d� (18)

in the ���-space, where J is the Jacobian matrix of the xyz to ��� transformation. Certainly,
Vcalculated can be stated as

∑
n

∫∫∫
Ve

H ′(x, y, z)dv where the summation traces all elements inside
the top hat. For the error in V , we define the following error norm:

err(V )= |Vcalculated−Vexact|
Vexact

(19)

A low quality mesh usually implies that the relevant surface mesh is also of low quality. This
implies that both the surface and volume representations are bad; i.e. err(S) and err(V ) values are
high. On the other hand, having low err(S) and err(V ) values does not guarantee mesh quality.
These are just indicators about the low quality but not the high quality of a mesh. Hence, more
reliable error norms should be defined if possible.
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Table III. Reduction in the error norms after smoothing.

err(S) err(V ) err(E)

3400 total elements Automatically generated mesh 0.0398 0.0336 0.0968
PSO-smoothed mesh 0.0367 0.0302 0.0881

28 800 total elements Automatically generated mesh 0.0026 0.0022 0.0131
PSO-smoothed mesh 0.0024 0.0020 0.0117

Moreover, solution of the scattered electric field results obtained by both the automatically
generated and the PSO-smoothed meshes are compared to the analytical results, which can be
found by using Mie Series. For the electric field, we define the following error norm:

err(E)= 1

K

K∑
i=1

‖Ecalculated(Pi )−Eexact(Pi )‖
‖Eexact(Pi )‖ (20)

where Eexact(Pi ) is the exact electric field calculated via the Mie Series at the centroid (Pi ) of an
element lying in free space; whereas Ecalculated(Pi ) is the value calculated by FEM at the same
point. Certainly, the summation traces all elements lying in free space; K is the number of such
elements; and err(E) is therefore the mean normalized error over the free space portion of the
computational domain.

Table III demonstrates the improvement in the solutions (i.e. reduction in the error norms) after
PSO smoothing. The reduction in err(E) is about 8–10% for this example. At first sight, one
can consider that the effort spent might not be worth to have such reduction. But it should be
considered that the initial mesh is also not very low in quality; and this is just a simple example
for demonstration of the concept. Certainly for the cases where the initial mesh is very low in
quality, the improvement in err(E) will be drastic.

In order to demonstrate the effectiveness of the proposed method, more complicated problems are
investigated. Figure 18(a) shows an object having a mesh with 2000 hexahedral elements and noisy
internal nodes (i.e. noise is superimposed to the internal nodes; the surface nodes are preserved).
For the solution, the mesh is smoothed by dividing this mesh into seven subdomains (6 of which
with 300 elements, 1 of which with 200 elements). The population size is chosen as 100, and the
number of iterations is chosen as 1000; yielding 100 000 objective function computations during
optimization. Figure 18(b) shows the smoothed version of the mesh. The Matlab implementation of
the smoothing takes 605 s (10min 5 s CPU time) on PC1; and 402 s (6min 42 s CPU time) on PC2
with these settings. From the figure, it can be observed that the smoothed mesh is of good quality
but not perfect. The main reasons are the sub-optimality caused by the divide-and-conquer approach
(as mentioned before), and the termination of the PSO at some point (i.e. 1000th iteration).

With similar settings, the mesh shown in Figure 19 is also smoothed with the proposed method
(again, for the generation of the bad mesh noise is superimposed to the internal nodes; the surface
nodes are preserved). The mesh with 2000 elements is smoothed at about 609 s (10min 9 s CPU
time) on PC1; and 404 s (6min 44 s CPU time) on PC2.

As all optimization-based smoothing techniques, the proposed method is computationally expen-
sive compared to Laplacian smoothing and its derivatives. For the execution time of the main
PSO routine; the DOF, the population size, and the number of iterations are the driving factors.
In addition, the number of elements (thus DOF) is the driving factor for the elapsed time during
the fitness/objective function computation.
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Figure 18. A shape homeomorphic to a cylinder: (a) intentionally badly generated (noise added) mesh
and (b) PSO-smoothed mesh with some details.

Moreover, as all population-based optimization techniques, the memory requirements of the
proposed method are higher than other optimization techniques; since it requires the current and
personal best states of all particles in the swarm (i.e. all population) together with the global best
solution to be stored in memory. Assuming that for each node, the coordinates (real numbers)
together with the indices (positive integers) of the connected nodes are stored; for an efficient
C/C++ implementation, the approximate memory consumption of the proposed method during
the execution time is given as

Nmemory (bytes)∼=18×(Npop+1)×DOF (21)

where Npop is the population size; which means about 2.5-megabyte memory usage for the problems
seen in Figures 18 and 19. It should be emphasized that the memory usage of the current Matlab
implementation is much more than this value due to the nature of Matlab.

In summary, the DOF, the population size, and the number of iterations are the key factors
determining the resource (memory and CPU time) usage. For given examples (even though the
global-optimality is sacrificed due to the divide-and-conquer approach, and sub-optimality is
accepted), the resource usage is tolerable and the results are promising.

6. CONCLUSIONS AND FUTURE WORK

A method for mesh improvement by means of local node repositioning based on the condition
number-related quality metric and Particle Swarm Optimization is proposed in this work. Meshes
that can be encountered in practical situations are smoothed with this method. As an example, the
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Figure 19. Another shape homeomorphic to a cylinder: (a) intentionally badly generated (noise added)
mesh and (b) PSO-smoothed mesh with some details.

impact of smoothing to the finite element solution accuracy is observed when H(curl)-conforming
hexahedral elements are used. On the other hand, the method puts no restriction on the type of
the hexahedral element; i.e. quality of any other hexahedral element type (H(grad)-conforming,
H(div)-conforming) can be improved by means of this method.

This paper demonstrates the applicability of the PSO to mesh smoothing problem as a conceptual
proof. Obviously, this yields potential future studies such as:

• investigation of the computation of ideal step size;
• the ideal population size and number of iterations for given DOF;
• improvement in convergence by means of modifications to the particle behaviors.

As future work, mesh improvement by means of PSO might also be extended to other types of
finite elements (e.g. triangular and quadrilateral elements in 2D, tetrahedral, prismatic elements
in 3D). The method can also be extended to any type of element with higher order if applied
to appropriate quality metrics or combined to appropriate validity criteria. Moreover, with the
definition of several objective functions depending on various quality metrics; multiobjective mesh
smoothing can be performed by means of multi objective particle swarm optimization [36]. And
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finally, for very high DOF problems (in the order of millions), instead of sacrificing the global-
optimality by DOF reduction techniques; parallelization of the PSO at distributed-computing
environments can also be considered.
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